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Abstract Algebra Fundamentals

Groups

A group is a set of elements with an “addition” operation +

• + is associative, with an identity element and inverses

Example

Integers Z with standard + form a group

• 0 is the identity element and inverses are additive inverses
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Abstract Algebra Fundamentals

Rings

A ring can be thought of as a group with an additional operation
and more restrictions

• + now commutative, also a “multiplication” operation ×
• × must be associative, distribute over +, and have an identity
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Abstract Algebra Fundamentals

Example

Set of 2 by 2 matrices with real entries M2(R) is a ring, with
addition and matrix multiplication

• Multiplication is not commutative, multiplicative inverse doesn’t
always exist

• ( a11 a12
a21 a22

) + ( b11 b12
b21 b22

) = ( a11 + b11 a12 + b12
a21 + b21 a22 + b22

)

• ( a11 a12
a21 a22

)( b11 b12
b21 b22

) = ( a11b11 + a12b12 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
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Abstract Algebra Fundamentals

Fields

A field can be thought of as a ring with a few more restrictions
on the multiplication operation

• Commutative multiplication, a multiplicative identity, and
multiplicative inverses (except for the addition identity)

Example

Set of integers modulo p (a prime) with typical addition and
multiplication form a field Fp

• 2−1 ≡ 4 (mod 7)
• 0 does not have multiplicative inverse
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Algebras over Fields

Algebras

An algebra is a set of elements with addition, multiplication, and
scalar multiplication over a field

Example

The complex numbers are an algebra over the reals

• (a + bi) + (c + di) = (a + b) + (c + d)i
• (a + bi)(c + di) = (ac − bd) + (ad + bc)i
• r(a + bi) = (ra) + (rb)i, for r ∈ R
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Modules

Modules

A module is like an algebra. However, modules scale over rings
instead of fields, and do not require the bilinear product.
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modulo 2 dual Steenrod algebra

• Consider the Steenrod algebra given by p = 2
(from algebraic topology)

• Obtain dual algebra by considering linear maps from the algebra to
the field it is considered over, or Z/2

• The modulo 2 dual Steenrod Algebra, denoted by A∗, is a
polynomial ring (Milnor)

dual Steenrod Algebra

A∗ = Z/2[ξ1, ξ2, . . .] where each ξi has degree 2i − 1
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Action of Z/2 on A∗

• Denote nontrivial element of Z/2 by χ

• Define the canonical conjugation action of Z/2 on A∗ inductively:

Conjugation Action

k

∑
i=0

χ(ξi) ⋅ ξ2
i

k−i = 0

• Example: χ(ξ2) ⋅ ξ2
2

0 + χ(ξ1) ⋅ ξ2
1

1 + χ(ξ0) ⋅ ξ2
0

2 = 0

• χ respects multiplication and addition:
• χ(ab) = χ(a)χ(b)
• χ(a + b) = χ(a) + χ(b)

• χ preserves degree

• χ2 = 0
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Action of Z/2 on A∗

Some small values of χ(ξi): (Note that ξ0 = 1)

Computed Values

χ(1) = 1

χ(ξ1) = ξ1
χ(ξ2) = ξ2 + ξ31
χ(ξ3) = ξ3 + ξ1ξ22 + ξ41ξ2 + ξ71
χ(ξ4) = ξ4 + ξ1ξ23 + ξ81ξ3 + ξ52 + ξ31ξ42 + ξ91ξ22 + ξ121 ξ2 + ξ151

Homogenous: deg ξ2 = 22 − 1 = 3, deg ξ31 = 3(21 − 1) = 3
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Homological Algebra

• Associate sequences of algebraic objects with other algebraic objects

• Example: Homology groups Hn(X)
• Elucidate information about ”holes” in topological spaces
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Group Cohomology

• View A∗ as a module over Z/2
• Let Z/2 act on A∗ by the conjugation action

• The cohomology groups Hn(G;M) of a module M and its
G-action elucidate information about the action

• Goal: compute cohomology groups of this action
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Fixed points

• Zeroth cohomology group H0(Z/2,A∗) is subalgebra Aχ∗ invariant
under the action χ

• We would like to compute these fixed points of χ
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Summary of work

• Some elements are clearly invariant under χ:

Invariant Elements

• 1, ξ1

• εχ(ε) for any ε

• χ(ε) + ε for any ε

• However, these elements do not span the fixed point space!
• Example: ξ32 + ξ3ξ21 + ξ91 in degree 9
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Summary of Work

• Let Dn be the dimension of A∗ in degree n

• Crossley and Whitehouse bounded the dimension dn of Aχ∗ in degree
n as

Bound on dn

Dn

2
≤ dn ≤Dn −

Dn−1

2

• Understanding Dn gives strong bounds on dn
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Summary of Work

0 100 200 300 400 500
0

0.3
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⋅106

n

Dn

Dimension of degree n part of dual Steenrod algebra

• Dn grows faster than polynomial, but still infra-exponential
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Summary of Work

• Similar Diophantines suggest the following asymptotic behavior:

Asymptotic Behavior

Dn ∼ exp [ ln
2 n

2 ln 2
]
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Future Work

• Asymptotics for rest of cohomology groups

• Full description of Aχ∗
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Thank you!
Questions?
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