Cohomology Groups of the Dual Steenrod Algebra

Ryan Kim*
Mentor: Sanath Devalapurkar
MIT PRIMES-USA
*Thomas Jefferson High School for Science and Technology

May 19, 2018

Abstract Algebra Fundamentals

Groups

A group is a set of elements with an "addition" operation +

- + is associative, with an identity element and inverses

Abstract Algebra Fundamentals

Groups

A group is a set of elements with an "addition" operation +

- + is associative, with an identity element and inverses

Example

Integers \mathbb{Z} with standard + form a group

- 0 is the identity element and inverses are additive inverses

Abstract Algebra Fundamentals

Rings

A ring can be thought of as a group with an additional operation and more restrictions

- + now commutative, also a "multiplication" operation \times
- \times must be associative, distribute over + , and have an identity

Abstract Algebra Fundamentals

Example

Set of 2 by 2 matrices with real entries $\mathcal{M}_{2}(\mathbb{R})$ is a ring, with addition and matrix multiplication

- Multiplication is not commutative, multiplicative inverse doesn't always exist
- $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)+\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22}\end{array}\right)$
- $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11} b_{11}+a_{12} b_{12} & a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}\end{array}\right)$

Abstract Algebra Fundamentals

Fields
A field can be thought of as a ring with a few more restrictions on the multiplication operation

- Commutative multiplication, a multiplicative identity, and multiplicative inverses (except for the addition identity)

Abstract Algebra Fundamentals

Fields

A field can be thought of as a ring with a few more restrictions on the multiplication operation

- Commutative multiplication, a multiplicative identity, and multiplicative inverses (except for the addition identity)

Example

Set of integers modulo p (a prime) with typical addition and multiplication form a field \mathbb{F}_{p}

- $2^{-1} \equiv 4(\bmod 7)$
- 0 does not have multiplicative inverse

Algebras over Fields

Algebras

An algebra is a set of elements with addition, multiplication, and scalar multiplication over a field

Algebras over Fields

Algebras

An algebra is a set of elements with addition, multiplication, and scalar multiplication over a field

Example

The complex numbers are an algebra over the reals

- $(a+b i)+(c+d i)=(a+b)+(c+d) i$
- $(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$
- $r(a+b i)=(r a)+(r b) i$, for $r \in \mathbb{R}$

Modules

Modules

A module is like an algebra. However, modules scale over rings instead of fields, and do not require the bilinear product.

modulo 2 dual Steenrod algebra

- Consider the Steenrod algebra given by $p=2$ (from algebraic topology)
- Obtain dual algebra by considering linear maps from the algebra to the field it is considered over, or $\mathbb{Z} / 2$
- The modulo 2 dual Steenrod Algebra, denoted by \mathcal{A}_{\star}, is a polynomial ring (Milnor)

modulo 2 dual Steenrod algebra

- Consider the Steenrod algebra given by $p=2$ (from algebraic topology)
- Obtain dual algebra by considering linear maps from the algebra to the field it is considered over, or $\mathbb{Z} / 2$
- The modulo 2 dual Steenrod Algebra, denoted by \mathcal{A}_{\star}, is a polynomial ring (Milnor)

dual Steenrod Algebra

$\mathcal{A}_{\star}=\mathbb{Z} / 2\left[\xi_{1}, \xi_{2}, \ldots\right]$ where each ξ_{i} has degree $2^{i}-1$

Action of $\mathbb{Z} / 2$ on \mathcal{A}_{*}

- Denote nontrivial element of $\mathbb{Z} / 2$ by χ
- Define the canonical conjugation action of $\mathbb{Z} / 2$ on \mathcal{A}_{\star} inductively:

Action of $\mathbb{Z} / 2$ on \mathcal{A}_{*}

- Denote nontrivial element of $\mathbb{Z} / 2$ by χ
- Define the canonical conjugation action of $\mathbb{Z} / 2$ on \mathcal{A}_{\star} inductively:

Conjugation Action

$$
\sum_{i=0}^{k} \chi\left(\xi_{i}\right) \cdot \xi_{k-i}^{2^{i}}=0
$$

Action of $\mathbb{Z} / 2$ on \mathcal{A}_{*}

- Denote nontrivial element of $\mathbb{Z} / 2$ by χ
- Define the canonical conjugation action of $\mathbb{Z} / 2$ on \mathcal{A}_{*} inductively:

Conjugation Action

$$
\sum_{i=0}^{k} \chi\left(\xi_{i}\right) \cdot \xi_{k-i}^{2^{i}}=0
$$

- Example: $\chi\left(\xi_{2}\right) \cdot \xi_{0}^{2^{2}}+\chi\left(\xi_{1}\right) \cdot \xi_{1}^{2^{1}}+\chi\left(\xi_{0}\right) \cdot \xi_{2}^{2^{0}}=0$
- χ respects multiplication and addition:
- $\chi(a b)=\chi(a) \chi(b)$
- $\chi(a+b)=\chi(a)+\chi(b)$

Action of $\mathbb{Z} / 2$ on \mathcal{A}_{*}

- Denote nontrivial element of $\mathbb{Z} / 2$ by χ
- Define the canonical conjugation action of $\mathbb{Z} / 2$ on \mathcal{A}_{*} inductively:

Conjugation Action

$$
\sum_{i=0}^{k} \chi\left(\xi_{i}\right) \cdot \xi_{k-i}^{2^{i}}=0
$$

- Example: $\chi\left(\xi_{2}\right) \cdot \xi_{0}^{2^{2}}+\chi\left(\xi_{1}\right) \cdot \xi_{1}^{2^{1}}+\chi\left(\xi_{0}\right) \cdot \xi_{2}^{2^{0}}=0$
- χ respects multiplication and addition:
- $\chi(a b)=\chi(a) \chi(b)$
- $\chi(a+b)=\chi(a)+\chi(b)$
- χ preserves degree
- $\chi^{2}=0$

Action of $\mathbb{Z} / 2$ on \mathcal{A}_{*}

Some small values of $\chi\left(\xi_{i}\right)$: (Note that $\xi_{0}=1$)

Computed Values

$$
\begin{aligned}
\chi(1) & =1 \\
\chi\left(\xi_{1}\right) & =\xi_{1} \\
\chi\left(\xi_{2}\right) & =\xi_{2}+\xi_{1}^{3} \\
\chi\left(\xi_{3}\right) & =\xi_{3}+\xi_{1} \xi_{2}^{2}+\xi_{1}^{4} \xi_{2}+\xi_{1}^{7} \\
\chi\left(\xi_{4}\right) & =\xi_{4}+\xi_{1} \xi_{3}^{2}+\xi_{1}^{8} \xi_{3}+\xi_{2}^{5}+\xi_{1}^{3} \xi_{2}^{4}+\xi_{1}^{9} \xi_{2}^{2}+\xi_{1}^{12} \xi_{2}+\xi_{1}^{15}
\end{aligned}
$$

Homogenous: $\operatorname{deg} \xi_{2}=2^{2}-1=3$, $\operatorname{deg} \xi_{1}^{3}=3\left(2^{1}-1\right)=3$

Homological Algebra

- Associate sequences of algebraic objects with other algebraic objects
- Example: Homology groups $H_{n}(X)$
- Elucidate information about "holes" in topological spaces

$$
K<\triangleleft \square \ggg \rightarrow+
$$

Group Cohomology

- View \mathcal{A}_{*} as a module over $\mathbb{Z} / 2$
- Let $\mathbb{Z} / 2$ act on \mathcal{A}_{*} by the conjugation action
- The cohomology groups $H^{n}(G ; M)$ of a module M and its G-action elucidate information about the action
- Goal: compute cohomology groups of this action

Fixed points

- Zeroth cohomology group $H^{0}\left(\mathbb{Z} / 2, \mathcal{A}_{*}\right)$ is subalgebra A_{\star}^{χ} invariant under the action χ
- We would like to compute these fixed points of χ

Summary of work

- Some elements are clearly invariant under χ :

Invariant Elements

- $1, \xi_{1}$
- $\epsilon \chi(\epsilon)$ for any ϵ
- $\chi(\epsilon)+\epsilon$ for any ϵ
- However, these elements do not span the fixed point space!
- Example: $\xi_{2}^{3}+\xi_{3} \xi_{1}^{2}+\xi_{1}^{9}$ in degree 9

Summary of Work

- Let D_{n} be the dimension of \mathcal{A}_{*} in degree n
- Crossley and Whitehouse bounded the dimension d_{n} of \mathcal{A}_{*}^{χ} in degree n as

Bound on d_{n}

$$
\frac{D_{n}}{2} \leq d_{n} \leq D_{n}-\frac{D_{n-1}}{2}
$$

- Understanding D_{n} gives strong bounds on d_{n}

Summary of Work

- D_{n} grows faster than polynomial, but still infra-exponential

Summary of Work

- Similar Diophantines suggest the following asymptotic behavior:

Summary of Work

- Similar Diophantines suggest the following asymptotic behavior:

Asymptotic Behavior

$$
D_{n} \sim \exp \left[\frac{\ln ^{2} n}{2 \ln 2}\right]
$$

Future Work

- Asymptotics for rest of cohomology groups

Future Work

- Asymptotics for rest of cohomology groups
- Full description of $\mathcal{A}_{\star}^{\chi}$

Acknowledgements

I would like to sincerely thank the following:

- Sanath Devalapurkar
- Dr. Tanya Khovanova
- MIT PRIMES-USA Program
- MIT Math Department
- My family

References

© Cassels, J.W.S. and Frohlich, A.
Algebraic Number Theory.
1967
Crossley, M.D. and Whitehouse, S.
On conjugation invariants in the dual Steenrod algebra Proceedings of the American Mathematical Society, vol. 128, 2000, pp. 2809-2818.

圊 Milnor, John
The Steenrod algebra and its dual
Ann. Math., , 67, (1958), 150-171. MR 20:6092 2809-2818.
[Image] Wikimedia Commons
Mug and Torus morph

Thank you! Questions?

